
~ Pergamon J. Appl. Maths Mechs, Vol. 62, No. 4, pp. 545-554, 1998 
© 1998 Elsevier Science Ltd 

All rights reserved. Printed in Great Britain 
PII:  S0021--8928(98)00071-9 0021-8928/98/S--see front matter 

PROBLEMS OF CONFLICT CONTROL OF HIGH 
DIMENSIONALITY FUNCTIONAl. SYSTEMS - 

N. Yu. L U K O Y A N O V  a n d  T. N. R E S H E T O V A  

Ekaterinburg 

(Received 26 November 1997) 

A minimax control problem with a performance index which is the sum of two terms is considered for a system with a delay. 
The first of these two terms in the Euclidean norm of the set of deviations of the motion of the system at specified instants of 
time from the stipulated objectives, while the second term is an integral-quadratic penalty which is imposed on the form of the 
control actions. The problem arises in a differential game. In this case, the history of the motion serves as the information for 
the strategies. A functional treatment of the control process in question is given which is based on an original prediction of the 
motion. A procedure for calculating the value of the game and for constructing minimax and maximin control strategies, which 
is convenient for numerical implementation, is obtained from this treatment and from the construction of hulls, convex upwards, 
of auxiliary functions from the method of stochastic program synthesis. The results of a numerical experiment are presented. 
© 1998 Elsevier Science Ltd. All rights reserved. 

This paper is related to the investigations in [1-9]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Suppose a system with a delay is described by the equation 

dx(t) I dt = A(t)x(t) + A n (t)x(t - h) + B(t)u + C(t)v, t o <~ t <~ "O (1.1) 

Here, x is an n-dimensional phase vector, u is an r-dimensional control vector (or the action of the 
first player), t) is an s-dimensional disturbance vector (or the action of the second player), A(t) ,  Ah(t), 
B(t)  and C(t) are continuous matrix functions, the delay h = const > 0, and to and ~ are fixed instants 
of time (to < 0). At the instant to, the initial state, Xo[to - h[. ]to] = {Xo[t], to - h <- t <~ to}, of system 
(1.1) is known, where x0[t] is a piecewise-continuous vector function (that is, x0[t] can have a finite 
number of points of discontinuity of the first kind and, at these points, it is continuous to the right). 
The Borel measurable finite samples u[t0[-]~) = {u[t], to ~< t < ~} and o[t0[. ]a3) = {t)[t], to ~< t < a3} 
are permissible. From an initial statex0[t0 - h[. ]to], these samples uniquely [10, p. 19] generate the motion 
x0[t0 - h[. ]~] = {x[t], to - h ~< t ~< a~} of system (1.1) (x[t] is an absolutely continuous vector function 
when to ~< t ~< ~, which satisfies the condition x[t] = Xo[t] when to - h ~< t ~< to and equality (1.1) for 
almost all t and u = u[t], u = u[t]. 

The natural number N I> 1, the instants of time t (i) ~[t0, ~]  (t (i) < t (i+1), i = 1 . . . . .  N - 1, t (N) = ~), 
(0 x (') the constant Co " n)-matrices D , where 1 ~< p(i) <~ n, and the n-dimensional vectors are specified. 

It is required to find the control (or disturbance) aimed at minimizing (maximizing) the performance index 

y ='f(X[to[.]O], U[to[.]O), V[to[.]O)) = 

( ~. I D(i)(x[t (i)]-g(i))121 Y2 = + S [(u[t], ¢p(t)u[t]) - (v [t], W(t)u [t])]dt (1.2) 
i=1 to 

Here and below I " [ is the Euclidean norm, (.,  • ) represents the scalar product of vectors, O(t) and 
q~(t) are symmetric, continuous matrix functions and the quadratic forms (u, O(t)u ) and (o, ~(t) t))  are 
positive definite when to ~< t ~< ~.~: 

tPrikl. Mat. Mekh. Vol. 62, No. 4, pp. 586-597, 1998. 
~:For N = 1, this problem is considered in the following papers: STIKHINA, T. K., The theory of positional control in systems 

with a delay, Sverdlovsk, 1984: Deposited in the All-Union Institute for Scientific and Technical Information (VINITI) 06.04.84, 
No. 2051 and STIKHINA, T. K., Problems of positional control and modelling in dynamical systems. Candidate dissertation, 
01.01.02. Sverdlovsk, 1985. 
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Remark. The performance index T from (1.2) can be given from the start or the functional 

y .  = I D ( t ) ( x l t l - g ( t ) ) ¢  dt  + I [(u[xl, ~ I ~ N ~ ] ) - ~ [ x l .  ~ F ( ~  [x])]a'x 
to 

is introduced as an approximating functional for the performance index, where D(t) is a known pieeewise-smooth 
matrix function and g(t) is a specified piecewise-continuous vector function. 

These two problems can be combined into a two-person differential game. Suppose the history of 
the motionx[t0 - h[. ]t] -- {x[x], to - h ~< x < t} has been put together under the action of the permissible 
forms u[t0[, ]t) = {u[x], to ~< x < t} and O[to[.]t) = {o[x], to ~< x < t} by the time t. The triple {x[x], to - 
h[. ]t]), u[t0[. ]t])} is called the form of the control process by the time t. Following the concepts in [1-6], 
we shall say that the functional p°(x[t0 - h[. It.], u[t0[. ]t.), o[t0[-]t.)), where t. is the initial instant of 
time (to ~< t. < O), is the value and the pair of strategies which are the vector functions from the history 
of the motion u(x[to - h[.  ]t], e) and o(X[to - h i .  ]t], e), where t is the actual instant of  time and e is an 
accuracy parameter (see, for example [5, p. 68]), forms a saddle point in the game for system (1.1) with 
the performance index T from, (1.2) if, whatever has served as the initial form of the process {x[t0 - 
h[.]t.], U[to[.]t,), O[to[.]t.)}, for any number ~ > 0 a number e. > 0 and a function 8(e) > 0, 0 < e ~< ~. 
are found such that, on the one hand, for any number e > 0, e ~ e., partitioning A = A k {tj} = {tj:4 = 
t., t j  < t j+ l ,  j = 1 . . . .  , k,  tk+ 1 = O} with step ~k = maxj = 1 k(tj+l - tj) ~ 8(e) and permissible form 
of the noise u[t.[. ]O) for the motion xa~,0[t 0 -h[.]O], which is the solution of the step-by-step equation 

dxea~"~t~/dt= A(t)xea,u~[t~+ A"(t)x~[t-h]+ B(t)u~x~,u~[to-h[.~-)+C(t)~[t] (1.3) 

t j ~ t < t j +  I, j = l  . . . . .  k, x~.uo['C]=x['c], t o - h ~ ' c < ~ t l = t .  

the following inequality will hold 

y(xL,o[to(.]o 1, u~.,,,(to[.]o), Utto[.]o)) ~p°(Xtto-ht-lt .] ,  uttot.lt.), U[to(.]t.))+~ (1.4) 

where U~u0[t0[-]~ ) = {u~u0[t] = u[t], to <~ t < t., U~u0[t] = u°(X~uo[to - h[-]tj], e), tj ~< t < tj+ l, j = 1 . . . .  , k }  
On the other hand, the inequality 

¥(xL,,,tto[.]o), U[to[.]o), u ~,,ottoF]O)) ~> p°(x[to - hi-It.], U[to[.lt.), o [to[.lto) ) - ; (1.5) 

where u~,oo[to[.]O) = (o~,~0[t] = Ù[t], to <~ t < t., o~A,o0[t] = o°(x~,oo[to - h[.]t:], e), t: <~ t < t:+1,j = 
i ..... k}, will hold for any number e > 0, e <~ e. and partitioning A = Ak (tj} with a step size 8k ~< 8(e) 
and a permissible form of the control u[t.[. ]a3) for the motion x~ ~0[t0 -h[ .]0), which is a solution of 
the step-by-step equation (1.3), where x~,0[t] has to be replaced byx~x ~o[t], u°(x~o[to - h[.]tj], e) by u[t] 
and u ° (x~o0[t0 - h[-]tj], by ~) respectively. 

We will call the strategies u°( • ) and o°( • ) the optimal minimax strategy and the optimal maximin 
strategy respectively. On developing the reasoning in accordance with the scheme from [1, 5, 6] and 
taking account of the results of [2-4], it can be shown that, in the game being considered, the value 
p°(x[t0 - h[. ]t.], u[t0[. It.), O[to[. It.)) and the optimal strategies u°(x[to - h i .  ]t], e) and o°(x[t0 - h[. ]t.], 

0 ~ 0 ~ e) exist. Here,  the actions u (x~u0[t 0 - h[. ]tj], e) and o (xao0[t0 - h[. ]tj], e) from (1.3)-(1.5) are formed 
using the value functional po(. ) by the method of extremal shift (see, for example, [6, p. 150]) in the 
appropriate accompanying motions. 

We emphasize that the optimal strategies u°( • ) and o°( • ) only use information on the history of the 
system. 

The calculation of the value p0(. ) and the construction of the strategies u°( • ) and o°( • ) in differential 
game (1.1), (1.2) make up the main content of this paper. 

A functional treatment of the control process being considered is given in the  next section. This 
treatment reducesthe  initial problem concerning the control of a system with delay (1.1) on a minimax 
(maximin) performance index (1.2) to an auxiliary problem on the minimax (maximin) control of a system 
without delay with a terminal dimensionality than the dimensionality n of the vector x. This functional 
interpretation starts from the constructions proposed in [11, p. 150] when investigating problems of 
the stability of motions in systems with delay and which are employed, in particular, in [9] for problems 
of the control of  ordinary differential systems with a functional value. The above information enables 
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one to use the results and to transform the constructions proposed in [5-9] for problems of the game 
control of systems without delay as it applies to the problem under consideration here. 

2, F U N C T I O N A L  T R E A T M E N T  

Suppose that F(~, x) is an n × n matrix which satisfies the following conditions: F(~, x) when ~ < z; 
F(x, x) = E In], where E In] is an n-dimensional unit matrix; dF(~, x)/d~ = A(g)F(~, t) + Ah(~)F(~ - h, x) 
when ~ > x. Then [10, p. 64], the motion X[to - h[.]O] which extends the initial history x,[t0 - h[.]t.], to 
~< t. < O) by virtue of Eq. (1.1) under the action of the permissible forms u[t.[.]O) and o[t.[-]O) can be 
written using the Cauchy formula 

x[z]=x,['c], to-h<<, x < t ,  
t.+h 

x[t] = F( t , t , )x , [ t , ]+ ~ F(t ,X)Ah(X)x,[x-h]dx + 
t. 

, ( 2 . 1 )  
+ f F(t, x)(B(z)u[x] + C(x)v [xl)d'~, t, ~< t <~ 0 

t, 

Suppose a historyx[t0 - h[. ]t] of system (1.1) has been realized by the time t ~ [to, 0]. We shall call 
the p-dimensional vector 

where 

y(x[t o - h[-]t]) = {yO)[t] ..... yCO)[tl}, p = pO) + ... + p(t~) (2.2) 

~ D(i)(x[t(i)] _g(i)), t (i) <~ t 
y(i)[t ] -  J . {  ,+h ) 

- l O(')L F(t(O't)x[t] + ! F(t(i'' x)Ah(x)x[~- h]dx-  g(i' t < t (i) 

the information object which corresponds to this history. The notation in (2.2) means that the firstp (1) 
components of the vector y(x[t0 - h[. ] are identical with the components of thep(1)-dimensional vector 
y0)[t], the following p(2) components are identical with the components of the p(2)-dimensional vector 
y(2)[t], and so on. The lastp (N) components of y(x[t0 -h[- ] t )  are identical with the vectory(U)[t]. Moreover, 
i f N  = 1, then y(x[t0 - h[. ]t]) = y(~[t],p = p(N). 

We use the notation 

t 

y*[t] = y*fu[to[.]t), v [to[.lt)) = J" [(u[x], ~ (x)u[x] ) -  (v [x], '¥(x)v [x])k/x 
to 

The performance index ,/from (1.2) can now be written in the form 

¥ --I y(x[t o - h[.]O]) I +y'[O] 

Next, we use the notation 

(2.3) 

(2.4) 

Bff)(t) = DCi)F(t(i),t)B(t), c(,i)(t) = D(i)F(t(i),t)C(t), i = 1 ..... N 

From the (p(i) × r-matrices B.  (i) (t) (i = 1 . . . . .  N), we set up the p × r matrix B.(t) such that the 
first p(1) rows of the matrix B.(t) are identical with the rows of the matrix B.(1)(t), the following p(Z) 
rows are identical with the rows of B.(2)(t), and so on, and the lastp (N) rows of the matrix B,(t) are identical 
with the rows of the matrix B(.~O(t). Using the same rule, we set up the (p × s)-matrix C.(t) from the 
(pC/) × s)-matrices C~(t). 

We now introduce an auxiliary w-system. Suppose w is thep-dimensional phase vector of this system 
and its evolution obeys the equation without delay 

dw l dt = B,(t)u + C,(t)v , to ~ t <~ O (2.5) 

For an initial state w[t0], specified at the instant to, the permissible forms u[t0[. ]O) and t)[t0[. ]O) 
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generate the absolutely continuous motion w[t0O]a~] = {wit], to ~< t <~ a3} of the w-system (2.5). We will 
estimate the quality of this motion using the performance index 

Yw = lw[O] I +y" [0] (2.6) 

wherey*[~] from (2.3) when t = O. 
The following lemma, which establishes the link between the evolution, by virtue of system (1.1), of 

the information object y(x[t0 - h[. ]t from (2.2) and the evolution of the w-system (2.5), holds. 

Lemma 1. Whatever the initial historyx[t0 - h[-]t.] of system (1.1) (to ~< t. ~< 0), the instant t* ~ (t., 
O), the permissible forms u[t.[. ]t*) = {u[t], t. ~< t < t*} of the control and t~[t.[. ]t*) = {t~[t], t. ~< t < 
t*} of the disturbance, the equality 

wit ° ] = y(x[t o - hi-It* ]) 

where y(x[t0 -h[.]t*]) is the information object (2.2) corresponding to the historyx[t0 - h [ .  ]t*], will hold 
for the history X[to - h[. ]t*], which is realized by the instant of time t* accompanying the motion of 
system (1.1) from the statex[t. - h[-]t.] under the action of these controls u[t.[. It*) and o[t.[. ]t*) and 
for the state w[t*] which is realized by the time t* in the motion of the w-system (2.5) from the state 
wit.] = y(x[t0 - h[.]t.]) (see (2.2)) when t = t.) under the action of the same controls. 

The validity of Lemma 1 can be verified directly using Cauchy's formula (2.1) and the properties of 
the matrix F(~, x). 

For the w-system (2.5) and the performance index'tw.from !2.6), we consider a two-person differential 
game (the actions u of the first player are aimed at mmmuzmg "tw while the aims of the second player 
are aimed at maximizing ~'w). 

It is well known [5, 6] that such a game has a value p°w(t, w, y*) and a saddle point which is made 
up from the optimal minimax uUw(t, w, e) and maximin Uw(t, w, e) strategies. This means that, whatever 
the initial position {t., w. = w[t.],y** = y*[t.]}, (to ~< t. < O) and for any number ~ > 0 which has been 
specified beforehand, the step-by-step control law which forms the actions 

u[t]=uOw(tj,wttj],~.), tj<~t<ti+l, j = l  ..... k, f i= t . ,  tk+l=O (2.7) 

guarantees the inequality 

7w ~ P°(t*,w*,Y.*)+~ (2.8) 

regardless of the dependence on the disturbance which is realized, if the values of the parameter 
> 0 and the step fik = m a x j  = 1 k (tj+l - tj) are chosen to be sufficiently small. On the other hand, 

a step law which prescribes the disturbance actions 

0 = v[ t]=vw(t j ,w[ t j ] ,e ) ,  t j<~t<tj+l,  j = l  ..... k, t l=t° ,  tk+l 0 (2.9) 

0 * Yw ~> Pw(t*,w°,Y*)-~ (2.10) 

subject to the condition that e > 0 and that 5t = maxj = x ..... k ( t j + l  - tj) are sufficiently small, regardless 
of the control which is realized. 

The optimal strategies u°w(t, w, e) and O°w(t, w, e) are constructed as extremal strategies to the value 
function u°(x[to - h[.]t], e) = u°w(t, y(x[t0 - h[.]t], ~) (see [5, pp. 210 and 220]). 0 , ,  , 0 , ,  

It follows from the properties (2.7)-(2.10) of the value p~(.) and the optimal strategies Uw(.) ano o w~') 
of the auxiliary game (2.5), (2.6), if the notation (2.3), the representation (2.4) and Lemma 1 are taken 
into account, that the functional p°(t., y(x[t0 - h[. ]t.]), y*[t.]) and the vector functions u°(t,  y(x[t0 - 
h[.]t]), e) and t)°w(t, y(x[t0 - h[. ]t]), e) will satis~ requirements (1.3)-(1.5) from section 1. The following 
assertion therefore holds. 

Theorem 1. Whatever the possible form {x[t0 -h[.]t.],  U[to[.]t.), t~[t0[.]t.)} of the control process (1.1), 
(1.2) by the instant of time t. e [to, O], the equality 

po (x[t ° _ h[-]t, ], u[t o [.]t.), v [to[.]t.)) = pO (t . ,y(x[t o - hi.It, ]), y* [t. ]) 

holds for the value of game (1.1). 
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Here, the strategies u°(x[to - h[.]t], e) = u°( t ,  y(x[t 0 - h[-lt], e) and o°(x[t0 - h[-]t], e) = o°(t, y(x[t 0 - 
h[.] t] ,  e), t. ~< t < 0 form the saddle point in game (1.1), (1.2). 

Remark.  Since, as was pointed out above, the function pO(. ) and the strategies u°( • ) and u°( • ) exist, Theorem 1 
independently establishes the existence of a value p0(. ) and the optimal strategies u°( • ) and u°( • ) in the differential 
game (1.1), (1.2) which is being considered. 

3. C A L C U L A T I O N  OF THE VALUE OF THE GAME 

According to Theorem 1, in order to determine the functional p0(.) of the value of the initial differ- 
ential game (1.1), (1.2), it is sufficient to construct the value function po(.) of the auxiliary differential 
game (2.5), (2.6). In order to do this, we make use of the method of hulls, which are convex upwards, 
of  deterministic functions which arise in the construction of stochastic program synthesis [5]. 

Suppose some position {t., w. = w[t.],y** = y*[t.]}, to ~< t. < O has occurred. We fix the partitioning 

Ak =A/c{Xj}={Xj: "[I =t , ,  Xj <Zj+ t, j = l  . . . . .  k ,  xk+ t =0} (3.1) 

-of the time interval It,, 0]. Suppose ! = {I 1 . . . .  , Ip} is ap-dimensional vector. We use the notation 

xj+t 

AWi(t.,I)= S max " + C . ( x ) u ) ) + ( u , ~ ( x ) u ) - ~ , W ( x ) u ) ] d x =  'J ~ ,~ '  m~t(I,(B.(x)u 
'~j+l 

= S (i,M('c)l)dx (3.2) 
'¢j 

where 

= ¼[c,('c)'t '-~(t)c.T(t)- B,('c~ -~(t)B~('c)] M(x)  (3.3) 

The superscript Tdenotes  transposition. The last equality in (3.2) follows from the direct calculation 
of the maximin. In (3.3), ~-a(x) and ~r-l(x) are the inverse matrices of ~(x) and re(T), respectively. 

We write the magnitude of the program extremum 

e w ( t . ,  w . ,  y*; A t )  = max[( l ,  w , )  + tpl ( t , ,  I)] + y* (3 .4)  
IIl,~l 

The function ¢Pl(t,, !) is determined from the sequence of functions cpj(t,, i) which satisfy the following 
recurrence relations 

~0k+l(t,,l)-- 0, W j ( t , , l ) = A W j ( t ° , l ) + q ~ j , l ( t , , l )  (3.5) 

¢pj(t.,l)= {¥j(t.,.)}*, j = 1 ..... k (3.6) 

In (3.6), the symbol {u/(. )}* denotes the hull, which is convex upwards, of the function u/(l) in the 
domain {1: [ i r ~< 1}, that is, the function which is the minimum function of all concave functions which 
majorize ~(!), I 11 ~< 1. 

The equality [7] 

p°w(t , ,w. ,y.)= hm ew(t , ,w. ,y . ;  A k) (3.7) 
k--~o= 

hoMs for any sequence of partitioning ~ = Ak(~j} (3.1), which satisfies the condition 5k = maxj = 1 ..... k 
('~j+l -- "~j) -'~ 0 as k ~ oo. 

Following [8], we construct the functions q~y(t,, !), [ i [ ~< 1,j = 1 . . . . .  k. We put 

0 

K(~) = f M(~)a~, t. ~< ~-< 0 (3.8) 
,[ 
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In view of (3.3), K(x) is a symmetricp xp  matrix-function. An orthonormal basis {lq ~l, q = 1 . . . . .  p} 
of ap-dimensional Euclidean space, composed of the eigenvectors of the matrix K(xj), is found for each 
j = 1 . . . .  , k. Quadrat icp xp  matrices Qi ( Q f f  = Qr) (j = 1 . . . .  , k) are constructed from the column 
vectors {lq 0], q = 1 . . . . .  p}. These matrices define orthogonal transformations of the variables 

! = Qs[,  I l l= lQs[ l= l [ I  (3.9) 

which reduces the quadratic forms (!, K(xj)l} to the canonical form 

(!, K('c s)I) = (Qsi, K( 'C j  )Q j ] )  = ),.yl~2 + . . . .  + ~c[j]T2p "P (3.10) 

where the real numbers ~.~P] (q = 1 , . . .  , p) are the eigenvalues of the matrix K(xj) to which the 
eigenvectors lq 0'! correspon~ 

We now put 

f 
~. = max,0, max max ktml[, j = 1 ..... k (3.11) 

m=j.....k q=l...,.p ~' J L 

When j  = k, in accordance with (3.2), (3.5) and (3.8), we obtain 

The equality 

Vk(t.,l) = (i,K(xk)i > 

Wk(t.,I) = Yk(t . ,Qki )  = 7[:1~2 + + Xmi'2 . . . . .  p "p 

follows from (3.10) and (3.12). 
We put 

(3.12) 

(3.13) 

q)k(t,,I) = {Wk(t.,')}* = Yk(t,,I), I!1~ 1 (3.15) 

holds. 
Suppose L* > 0. A vector is found in the basis (1~ 1, q = 1, r,:., p} which corresponds to the number 

~.*, which we denote by !*. On numbering the eigenvalues Lt~J in the proper manner, we assume that 
k* = ~.*p, = !* = ~] and construct the function 

,~[k] 72 a . ~ * ( l _ ~ 1 2  "2 _ q)* (I) = ¢p" (QtJ) = )~[tk}~ 2 + + "~p-l'p-I + ... - ... - l p _ l ) -  

= ~ t  (t*'Qk i ) - ~ "  l i l2 +~'* = Wk(t*'i)- ~'* IilZ +~'* (3.16) 

It can be verified [8] that, when L* > 0, the function (p*(l) is the required hull, which is convex upwards, 
of the function Wk(t*, !). 

Hence, when ~.* > 0, the equality 

q)k(t.,l) = {Vt(t.,.)}* = q)*(l), IIl~ 1 (3.17) 

holds. 
Using (3.11)-(3.14), we obtain that the function (pk(t., !), both in the case when ~.* ~< 0 (see (3.15)) 

and when L* > 0 (see (3.16), (3.17)), is defined by the expression 

(Pk ( t , , l )  = (i, K(x k )!) - ) ~ ,  I i  I z +k~ (3.18) 

We now consider an induction with respect to j  f romj  = k to j  = 1. 
We assume that, at the (j + 1)th step, the required huh has already been constructed and has the 

If L* <~ 0, the function Wk(t,, 1) is a negative quadratic form of constant sign and, consequently, a 
concave function and the equality 

max (3.14) 
q=l....,p 
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fo rm 

Ipj+l (t., !) = (!, K(~j+] )!) - ;L;.+t II 12 +;L;+ l 

Equality (3.19) holds in every case when j  + 1 = k which follows from (3.18). 
The equality 

cpj(t,,l) = ( l ,K(x j ) l ) -Z~  Iil 2 +~; 

then holds for the function ~pj(t,, !) from (3.5) and (3.6). 

To prove equality (3.20), using (3.8) and (3.19) we calculate 

¥/(t*,l)=(l,K(xi)l)-X;+l I i l  2 +~';+I 

in accordance with (3.2) and (3.5). 
On taking (3.9) and (3.10) into account, we have 

2 + ... ,it +x.+,  

We put 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

X* = max xIjl (3.23) 
q=l,...,p q 

When ~-* ~< ~-j+t* (see (3.11)), the function ~j(t., i) from (3.21) and (3.22) turns out to be concave and, 
consequently, the relation 

~j(t , , i )={~j(t , , . )}* =~j(t , , l ) ,  I!1~1 (3.24) 

holds 
In the case when ~,* > ~,j+~, we set 

tpj (t.,l) = (!, K ( ' t j  ) l )  - ;L* I! 12 +X* (3.25) 

As in the case whenj = k, it can be verified directly that the function (pj(t., l) from (3.25) actually is the required 
hull, which is convex upwards, of the function ~j(t,, l) from (3.21) when ~.* > ~-~+l- 

We conclude from (3.11), (3.21) and (3.23) that, in both cases, expressions (3.24) and (3.25) can be written with 
the same formula (3.20). 

By virtue of the induction, equality (3.2) holds for anyj  = 1 . . . . .  k. This completes the construction 
of  the sequence of functions cpj(t,, !), I ! I ~< 1, j = 1 . . . . .  k. 

From (3.4) and (3.2), taking account of the fact that Xl = t,, we derive 

ew(t.,w.,y:; At) = max[ ( l ,w . )  + ( l ,K(t . ) l )  --~;l | l  2 ]+ ~L~ +y.* 
II1~1 (3.26) 

We now consider the matrix K(x) from (3.8). Suppose L[x] is its largest eigenvalue. We put 

~ .  = max Z,['q = Z[~] (3.27) 

We shall assume that the number x = x (t,) has been included in the set of points Tj of the partitioning 
Ak (see (3.1)) of the interval [t,, 0]. It then follows from (3.26), when account is taken of (3.11) and 
(3.27), that the quantity ew(t,, w,,y*,; Ak) is independent of the choice of k, k I> 2 and it is sufficient to 
take the partitioning A2{x j} = {xl = t,, -c 2 = z, z3 = O} for its calculation. Consequently, according to 
(3.7), the equality 

p° (t,, w,,y,*) = max[(l,w,) + (l,K(t,)l) -~t, ]I121+ ~']. +Y* 
II1={] 

(3.28) 

also holds and is valid for any possible position {t,, w,, y*}. 
By virtue of Theorem 1, when w, = y(x[t0 -h[ - ] t , ] )  (see (2.2) in the case when t = t,) and the notation 

(2.3) is taken into account, expression (3.28) gives a formula for calculating the value O°(x[to - h[. ]t], 
~) of the initial differential game (1.1), (1.2). 
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4. O P T I M A L  S T R A T E G I E S  

In order to determine the optimal strategies u°(x[to - h[. ]t], 8) and t)°(x[t0 - h[. ]t], e) for the initial 
game (1.1), (1.2). following the material which has been presented above, we construct the strategies 
u°(t,  w, 8) and U°w(t, w, e) which are optimal for the auxiliary game (2.5), (2.6). 

Suppose that a position {t, w = w[t], y* = y*[t]} has occurred and that a value of the parameter  
> 0 has been selected. The optimal actions u°(t,  w, e) and U°w(t, w, 8) are formed by the method of 

an extremal shift to the corresponding points, which are determined using the function p°w(. ) from 
(3.28) (see the details in [5, p. 416]). We now present the resulting formulae 

u ° (t, w, e) = - I ~-i (t)B r (t)l o (t, w, e) (4.1) 
2 

o (t, w, e) = 2 W-I (t)c*r (t)l~ (t, w, e) u 

where I ° = I°(t, w, 8) and I ° = l°(t, w, 8) are the maximizing vectors 

o o o • ii o 12 o = max[Idem(l ° ~ I)] ( l " ' w ) + ( l u ' K ( t ) l u ) - X '  - [ ( l+ l lu  12) (~(t-t°)+~)])~ I,~I 

o o -x;  I (l~,K<t)l~) I +t(1+ll~ 12) (e(t-to)+ e)] ~ = max[Idem(l~ --~ I)] (4.2) 
III~I 

Here, "Idem" on the right-hand side of the equality denotes an expression which is identical with 
the left-hand side of this equality on replacing the symbols in the brackets. 

Note  that the actions U°w( • ) and t)°w( • ) are bounded. 
On substituting w = y(x[t0 - h[.]t]) into (4.1) and (4.2) (see 2.2)), in accordance with Theorem 1 we 

obtain formulae which define the strategies u°(x[to - h[. ]t], 8) and u°(x[t0 - h[. ]t], e), which are optimal 
in the differential game (1.1), (1.2). 

5. E X A M P L E  

Consider the system with delay 

":l (t) = -2q (t)- 0. 4;" I (t) + 0.02~2 (t)- ~ (t- l)- 

-0.4~l(t-l)+O.4r2(t-l)-F2(t-l)+(5-t)u I +2u I 

F2(t) = O.Ol~(t)_ r2(t)_O.l~2(t)_O.3ri(t_ l) + (5.1) 

+0.7k1(t-1)-O.4r2(t-l)+O.5k2(t-l)+(4-O.5t)u 2 +30 2 

0~<t~4, q (~) = sin'l:, r2 ('0 = cos~, - 1 ~ < 0  

where a dot above a symbol denotes a derivative with respect to t. 
Suppose the performance index of the control process has the form 

= Cn2[0.51+ r2[0.51+ ~2[0.5]+ r2t0.53+ r12tl]+ ~t l ]+ n2tl.5]+ 

+r~[2]+ ~2[2.5]+ r22 [31 + ~213.51 + ~2[3.5]+ n2t4l + r~[4] + (5.2) 
A A 

4 4 
+62[4]+/~214])~ +j " Cu2tt]+u2[t])~-I <o?(,]+vlt,])dt 

o o 

After making the substitutions Xl = rl, x2 = ~:1, x3 = r2, x4 = ~:2, system (5.1) can be rewritten in the form (1.1), 
where we have to substitute 

I Xl 

X2 
X--~ 

X3 

X4 

nolo i i o0o -2 -0.4 0.02 -~ -0.4 0.4 -1 
A =  A h = 

0 0 0 ' 0 0 0 0 

0.01 0 -1 ..-0.1 1 I - 0 . 3  0 . 7 - o . 4  0.5 
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0 

5 - t  
B(t) = 

0 

0 

h= 1, to=O, 

0 i 0 
0 , C(t) = 

4 - 0 . 5 t  

0 = 4  

°i i I, 2 0 , u= ul el 

0 u2 , 0--- !/2 

0 

Here, the performance index (5.2) is rewritten in the form (1.2) in the case of the substitution 

N=8, t(O=O,5i, g(i)=o, i=I ..... 8, DO)=D(8)=E[4] 

D(2)=Ill0 0 0 0  I 0 ' 0  I D(3)="I  0 0 0 , ,  D(4)=,O 1 0 0 u 

o o ,,, : : , o  o ,  o,, : :11 °'°ooo :! 
~(t) = ,F(t) = E TM 

The problem of game control for system (5.1) in the case of performance index (5.2) was solved using the 
constructions described above. In this case, the dimensionality of the information object y(.) and, consequently, 
also of the auxiliary control problem of the w-system, p = 16. 

We now present the results of modelling of the control process (5.1), (5.2) using a digital computer (in the 
calculations in scheme (1.3)-(1.5) we chose k = 4000, 8k = 4.4000 = 0.001 and e = 0.01). The a priori calculated 
value of the game 

pO (x 0 [-1 [.]01, u[0[.]0), v [0[.10)) = p°(lsin x, cosx, cos'~ ,-sin x, - 1 ~< x ~ 0}) = p0 ~ 2.741 

The motion of system (5.1), which occurred under the combined action of the optimal strategies u°( - ) = 
0 0 0 u (x[-l[.]t], e) and t~ ( . )  = t) (x[-l[- ]t], e) is shown in Fig. 1. In this case, the value of the performance index (5.2) 

is equal to 

y~- 2.695 + 5.376 - 5.329 = 2.742 ,- p0 

Graphs of the corresponding forms of the control and the disturbance are shown in Fig. 2. 
The motion of system (5.1) which was realized under the action of the optimal control strategy u°(.) in a pair 

with the disturbance t>(. ) = 1/2qJ-l(t)C r (t)x(t)/I x(t) [ is shown in Fig. 3. The result obtained is 

y =, 2.281 + 4.278 - 4.033 = 2.526 < pO 

=1 

r, 

k 
-2 

Fig. 1. Fig. 2. 
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Fig. 3. Fig. 4. 

The motion of system (5.1), which occurred under the action of the optimal disturbance strategy u°(.) in a pair 
1 T with the control u(.) = - 1/20- (t)B (t)x(t)/] x(t) I is shown in Fig. 4. The results obtained is 

¥,, 10.443 + 3.887 - 8 .866 -- 5.464 > flo 

The efficiency of the proposed control was also verified in the case of the following modelling of the control 
process (5.1), (5.2) as follows. 

The optimal control strategy in a pair with the disturbance o(. ) -= 0, where the result was ~/~ 1.195 + 1.502 - 
0 = 2.697. 

The optimal control strategy u°(.) in a pair with the disturbance u(. ) -- {Ul('), u2(. )} = {0.6 sin(t), 0.4 sin(2t + 1)}, 
where the result was y ~- 1.617 + 1.737 - 0.984 = 2.37. 

The optimal disturbance strategy u°( • ) in a pair with the control u°( • ) - O, where the result was y -~ 32.344 + 
O -  12.166 = 20.178. 

This research was suppor ted  financially by the Russian Foundat ion  for Basic Research (97-01-00160). 
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